NewsIgnifer
NewsIgnifer Menu
  • Çerezler ve Gizlilik İlkeleri
  • Checkout
  • Cookie Policy (EU)
  • Hakkımızda
  • Kullanım Koşulları
  • Login/Register
  • My account
  • Reklam & İletişim
  • Sample Page
  • Sürdürülebilirlik
  • Takip et
  • Teşekkürler
  • Yeşil Enerji, Enerji Hisseleri, Yeşil Endeks, Sürdürülebilirlik, Yeşil Ekonomi
  • Yeşil Haber Ekip
  • Yeşil Haber Yazarlar
  • Yeşil Haber’de en çok okunan 100 makale
  • Yeşil Haber’de öne çıkanlar
NewsIgnifer Logo

Search

Rüzgar enerjisi nedir, rüzgarden nasıl elektrik üretilir

Rüzgar enerjisi nedir?

Rüzgar enerjisi; doğal, yenilenebilir, temiz ve sonsuz bir güç olup kaynağı güneştir. Güneşin dünyaya gönderdiği enerjinin yüzde 1-2 gibi küçük bir miktarı rüzgar enerjisine dönüşür.

Rüzgran enerjisi nedir sorusuna basitçe cevap vermek gerekirse şu şekilde kısaca rüzgar enerjisini ve üretimini tanımlayabiliriz. Güneşin, yer yüzeyini ve atmosferi homojen ısıtmamasının bir sonucu olarak ortaya çıkan sıcaklık ve basınç farkından dolayı hava akımı oluşur. Bir hava kütlesi mevcut durumundan daha fazla ısınırsa atmosferin yukarısına doğru yükselir ve bu hava kütlesinin yükselmesiyle boşalan yere, aynı hacimdeki soğuk hava kütlesi yerleşir.

Bu hava kütlelerinin yer değiştirmelerine rüzgar adı verilir. Diğer bir ifadeyle rüzgar; birbirine komşu bulunan iki basınç bölgesi arasındaki farktan dolayı meydana gelen ve yüksek basınç merkezinden alçak basınç merkezine doğru hareket eden hava akımıdır.

Rüzgarlar yüksek basınç alanlarından alçak basınç alanlarına akarken; dünyanın kendi ekseni etrafında dönmesi, yüzey sürtünmeleri, yerel ısı yayılımı, rüzgar önündeki farklı atmosferik olaylar ve arazinin topografik yapısı gibi nedenlerden dolayı şekillenir. Rüzgarın özellikleri, yerel coğrafi farklılıklar ve yeryüzünün homojen olmayan ısınmasına bağlı olarak, zamansal ve yöresel değişiklik gösterir.

Rüzgar enerjisinin avantajları

Rüzgar hız ve yön olmak üzere iki parametre ile ifade edilir. Rüzgar hızı yükseklikle artar ve teorik gücü de hızının küpü ile orantılı olarak değişir. Rüzgar enerjisi uygulamalarının ilk yatırım maliyetinin yüksek, kapasite faktörlerinin düşük oluşu ve değişken enerji üretimi gibi dezavantajları yanında üstünlükleri genel olarak şöyle sıralanabilir;

  1. Atmosferde bol ve serbest olarak bulunur.
    2. Yenilenebilir ve temiz bir enerji kaynağıdır, çevre dostudur.
    3. Kaynağı güvenilirdir, tükenme ve zamanla fiyatının artma riski yoktur.
    4. Maliyeti günümüz güç santralarıyla rekabet edebilecek düzeye gelmiştir.
    5. Bakım ve işletme maliyetleri düşüktür.
  2. İstihdam yaratır.
    7. Hammaddesi tamamıyla yerlidir, dışa bağımlılık yaratmaz.
    8. Teknolojisinin tesisi ve işletilmesi göreceli olarak basittir.
    9. İşletmeye alınması kısa bir sürede gerçekleşebilir.

Rüzgar enerjisi nedirRüzgar türbini teknolojisi

Rüzgar türbinleri, rüzgar enerji santrallerinin (RES) ana yapı elemanı olup hareket halindeki havanın kinetik enerjisini öncelikle mekanik enerjiye ve sonrasında elektrik enerjisine dönüştüren makinelerdir. Rüzgar türbinleri dönüş eksenlerinin doğrultusuna göre yatay eksenli veya düşey eksenli olarak imal edilirler. Bu tiplerden en fazla kullanılanı yatay eksenli rüzgar türbinleridir.

Yatay eksenli rüzgar türbinleri, dönme eksenleri rüzgar yönüne paralel ve kanatları ise rüzgar yönüne dik vaziyette çalışırlar. Bu tip rüzgar türbinleri bir, iki, üç veya çok kanatlı yapılmaktadır. Yatay eksenli rüzgar türbinleri; rüzgarın kuleyi yalamadan rotora çarpması durumunda ileri yada önden rüzgarlı (up-wind), önce kuleye dokunup sonra rotora gelmesi koşulunda geri yada arkadan rüzgarlı (down-wind) türbin adını alırlar.

Düşey eksenli rüzgar türbinlerinin eksenleri rüzgar yönüne dik ve düşey olup kanatları da düşey vaziyettedir. Düşey eksenli rüzgar türbinlerinde rüzgarın esme yönü değiştiği zaman yatay eksenli rüzgar türbinlerinde olduğu gibi herhangi bir pozisyon değiştirmesi olmaz. Elektrik üretim amaçlı şebeke bağlantılı modern rüzgar türbinleri çoğunlukla 3 kanatlı, yatay eksenli ve up-wind türü rüzgar türbinleridir.

Yatay eksenli rüzgar türbinleri

Günümüzde teknolojik gelişmelere paralel olarak 1,0-6,0 MW gücünde yatay eksenli rüzgar türbinleri kullanılmaktadır. Bir rüzgar türbini, çevredeki engellerin rüzgar hız profilini değiştirmeyeceği yükseklikteki bir kule üzerine yerleştirilmiş gövde ve rotordan oluşur. Kanatlar ve göbek rotor olarak adlandırılır. Kanatlar polyester ile kuvvetlendirilmiş fiberglass veya epoxy ile güçlendirilmiş fiber karbondan yapılmakta ve çelik omurga ile desteklenmektedir.

Üç kanatlı yeni nesil rüzgar türbinlerinin kanat çapları 100 metre değerine ulaşmıştır. Modern rüzgar türbinlerinin rotor göbekleri (hub) yer seviyesinden 60-100 m yükseklikte bir kule üzerinde bulunur. Bir rüzgar türbininden elde edilecek enerji miktarı birinci dereceden türbin hub yüksekliğindeki rüzgar hızına bağlı olmaktadır. Türbin hub yüksekliğinin artırılması sonucu rüzgar hızının artacağı gerçeği dikkate alındığında hub yüksekliğinin artırılması, mevcut rüzgar gücünden maksimum düzeyde yararlanılmasını sağlayacaktır.

Gürültü kirliliğini önlemek için gövde ses izolasyonludur. Kuleler kafes veya boru biçiminde yapılmaktadır. Kule yükseklikleri fazla olabildiğinden kafes kulelerin dışındaki konstrüksiyonlar iki yada üç parçalı olabilmektedir. Kafes kuleler görüntü kirliliği ve bakım zorluğu nedeniyle hemen hemen terk edilmiştir. Maliyeti fazla olmakla beraber günümüzde yaygın olarak açık gri renge boyanmış silindirik konik kesitli kuleler kullanılmaktadır.

Rotor düşük devirli bir ana mile bağlıdır. Rüzgarın kinetik enerjisi rotor tarafından mekanik enerjiye çevrilir ve düşük devirli ana milin dönüş hareketi gövde içerisindeki iletim sistemine (dişli kutusu vb.), oradan jeneratöre aktarılır. İletim sistemi, jeneratör ve yardımcı üniteler gövde içerisinde yer alır. Bir rüzgar türbininde tanıtılan elemanlar dışında; frenleme düzenleri, kontrol-kumanda sistemleri, yönlendirme motoru ve mekanizması, anemometre ve rüzgar gülü gibi ölçüm cihazları bulunur.

rüzgardan nasıl elektrik üretilir-Rüzgar türbini teknolojisiRüzgar türbinleriyle ilgili parametreler

Atmosferde serbest olarak yer değiştiren hava, belli bir kütleye ve rüzgar formunda hareket halinde olması nedeniyle bir kinetik enerjiye sahiptir. Kinetik enerji ve momentumun korunumu ilkelerinden yola çıkarak atmosferde serbest olarak hareket eden rüzgarın Po teorik gücünün; ? hava yoğunluğu ( kg/m3 ), A rüzgarın ilerleme yönüne dik kesit alanı ( m2 ) ve V rüzgar hızı ( m/sn) olmak üzere matematiksel ifadesi aşağıdaki gibidir.

Rüzgarın teorik gücü esas olarak rüzgar hızının küpüyle orantılıdır. Bu nedenle, rüzgar hızının fazla olduğu yerlere rüzgar enerji santralleri kurmak ekonomik olmakta ve bu tür rüzgar kaynak alanlarında daha çok enerji üretilebilmektedir. Po teorik rüzgar gücünün rüzgar türbini tarafından elektrik enerjisine dönüştürülebilen kısmı ise; şeklindedir. Burada; Cp güç faktörü, A rotor dönüşü sırasında taranan alan ( m2 ), NG jeneratör verimi, ND dişli kutusu verimi ve Nc ise kuplaj verimidir.

Güç faktörü maksimum yüzde 59,3 olup Betz Limiti denilir

Cp güç faktörü, elde edilen şaft gücünün rüzgar türbinine gelen rüzgar gücüne oranı olarak tanımlanır. Güç faktörü maksimum %59,3 olup bu değere Betz Limiti denilmektedir. Günümüz teknolojisi kullanılarak iyi tasarlanmış ideal bir rüzgar türbini için Cp değeri % 40 civarındadır. CP güç faktörü, kanatların dönüş hızı (U) ile kanatlara çarpan rüzgar hızı (V) oranının bir fonksiyonudur Cp=f(U/V). Bu (U / V) oranı aynı zamanda “Tip-Speed Ratio – Kanat Ucu Çevresel Hız Oranı ?” olarak bilinir.

Bu ifadeden de anlaşılacağı gibi prensip olarak, eğer elde edilen gücün sürekli olarak maksimum seviyede olması isteniyorsa, rotor dönüş hızının, herhangi bir şekilde, anlık rüzgar hızlarına göre değiştirilerek kanat ucu çevresel hız oranının maksimum CP değerini verebilecek bir optimumda tutulması gerekmektedir. Geliştirilmiş rüzgar türbinlerinde bu düzenleme otomatik olarak gerçekleştirilir.

En yüksek rüzgar hızına nominal hız adı verilir

Rüzgar türbinleri, elektrik enerjisi üretimine ancak belirli bir rüzgar hızında başlayabilmektedir. “Cut-in” adı verilen bu rüzgar hızının altında sistem tamamen durmaktadır. Sistemden elde edilen elektrik enerjisi rüzgar hızının artmasıyla birlikte artmaktadır. Her bir rüzgar türbini için belirlenmiş bir rüzgar hızında, sistemden elde edilen güç en büyük değere ulaşır.

Bu en büyük güce “nominal güç” ve bu rüzgar hızına “nominal hız” adı verilmektedir. Rüzgar hızının, nominal hız değerini aşması halinde sistemden elde edilecek güç nominal güç kadar olacaktır. Sistemin hasar görmemesi için belirli bir rüzgar hızından sonra rüzgar türbinlerinin stop konumuna geçmesi otomatik olarak sağlanır. Bu maksimum hıza sistemin “Cut-out” hızı adı verilmektedir.

Diğer bir ifadeyle, bir rüzgar türbini Cut-in ve Cut-out rüzgar hızları arasında enerji üretimini gerçekleştirir. Modern rüzgar türbinlerinin Cut-in hızları 3-4 m/s, nominal hızları 11-15 m/s ve Cut-out hızları ise 25-30 m/s arasındadır.

Recent Posts

  • IKEA 2030 döngüsel ekonomi vizyonu: Türkiye için ne vadediyor?
  • ESG’nin evrimi: Ricoh ve Unilever örnekleriyle sürdürülebilirliğin yeni yüzü
  • Türkiye’de her ilçeye bir gıda bankası hedefi: TİDER’den israfla mücadelede 15. yıl vizyonu
  • TÜREB, WindEurope 2025’te Türkiye’nin rüzgar gücünü tanıtacak
  • Trump’tan küresel ticarete tarife darbesi: Yeşil ekonomi ve Türkiye nasıl etkilenecek?

Recent Comments

  1. Seyfullah Pandır - Alfa Solar Enerji 2024 2. çeyrek finansal performansı
  2. Baha Ata - Metan emisyonlarını azaltan teknolojiler: Uydu ve iş birliğinin gücü
  3. İbrahim Günel - Metan emisyonlarını azaltan teknolojiler: Uydu ve iş birliğinin gücü
  4. Murat Türkmen - Türkiye’nin ilk yerli batarya enerji depolama sistemi
  5. Sadan KUCUKLER 0032 0476 400 480 Belcika - Türkiye’de güneş enerjisinde yeni dönem: Hücre entegrasyonu şartı ile gerçek üreticilere destek

Archives

  • Nisan 2025
  • Mart 2025
  • Şubat 2025
  • Ocak 2025
  • Aralık 2024
  • Kasım 2024
  • Ekim 2024
  • Eylül 2024
  • Ağustos 2024
  • Temmuz 2024
  • Haziran 2024
  • Mayıs 2024
  • Nisan 2024
  • Mart 2024
  • Şubat 2024
  • Ocak 2024
  • Aralık 2023
  • Kasım 2023
  • Ekim 2023
  • Eylül 2023
  • Ağustos 2023
  • Temmuz 2023
  • Haziran 2023
  • Mayıs 2023
  • Nisan 2023
  • Mart 2023
  • Şubat 2023
  • Ocak 2023
  • Aralık 2022
  • Kasım 2022
  • Ekim 2022
  • Eylül 2022
  • Ağustos 2022
  • Temmuz 2022
  • Haziran 2022
  • Mayıs 2022
  • Nisan 2022
  • Mart 2022
  • Şubat 2022
  • Ocak 2022
  • Aralık 2021
  • Kasım 2021
  • Ekim 2021
  • Eylül 2021
  • Ağustos 2021
  • Temmuz 2021
  • Haziran 2021
  • Mayıs 2021
  • Nisan 2021
  • Mart 2021
  • Şubat 2021
  • Ocak 2021
  • Aralık 2020
  • Kasım 2020
  • Ekim 2020
  • Eylül 2020
  • Ağustos 2020
  • Temmuz 2020
  • Haziran 2020
  • Mayıs 2020
  • Nisan 2020
  • Mart 2020
  • Şubat 2020
  • Ocak 2020
  • Aralık 2019
  • Kasım 2019
  • Ekim 2019
  • Eylül 2019
  • Ağustos 2019
  • Temmuz 2019
  • Haziran 2019
  • Mayıs 2019
  • Nisan 2019
  • Mart 2019
  • Şubat 2019
  • Ocak 2019
  • Aralık 2018
  • Kasım 2018
  • Ekim 2018
  • Eylül 2018
  • Ağustos 2018
  • Temmuz 2018
  • Haziran 2018
  • Mayıs 2018
  • Nisan 2018
  • Mart 2018
  • Şubat 2018
  • Ocak 2018
  • Aralık 2017
  • Kasım 2017
  • Ekim 2017
  • Eylül 2017
  • Ağustos 2017
  • Temmuz 2017
  • Haziran 2017
  • Mayıs 2017
  • Nisan 2017
  • Mart 2017
  • Şubat 2017
  • Ocak 2017
  • Aralık 2016
  • Kasım 2016
  • Ekim 2016
  • Eylül 2016
  • Ağustos 2016
  • Ocak 2016

Categories

  • AI
  • Biyokütle
  • Elektrikli Araçlar
  • Enerji Depolama
  • Etkinlikler
  • Güncel
  • Güneş
  • Hidroelektrik
  • Hidrojen
  • Jeotermal
  • Nükleer
  • Öne Çıkanlar
  • Röportaj
  • Rüzgar
  • Sürdürülebilirlik
  • Yazarlar
  • Yenilenebilir Enerji
  • Yeşil Ekonomi
  • Yeşil Endeks
  • Yeşil Haber'den
  • Yeşil İK
  • Yeşil Sanat
  • Yeşil Sözlük
  • Yeşil TV
NewsIgnifer

© 2025 NewsIgnifer - A Magrus project.

  • Bluesky
  • Facebook
  • Instagram
  • LinkedIn
  • Pinterest
  • TikTok
  • X
  • YouTube